3. РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ МАКСВЕЛЛА ВБЛИЗИ ПОВЕРХНОСТИ ЦЕЛОГО ПОРЯДКА
3. РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ МАКСВЕЛЛА ВБЛИЗИ ПОВЕРХНОСТИ ЦЕЛОГО ПОРЯДКА
Определение компонент электромагнитного поля в конечном виде возможно только в простейших случаях. В более сложных случаях представление электромагнитного поля в виде координатных составляющих требует разложения в степенной ряд. Поэтому из всех членов ряда рассмотрим линейную и квадратичную составляющие разложения и выясним их характеристики как полевого решения и геометрического преобразования системы координат.
Рассмотрим следующую линейную М – функцию f(λ):
(24):
где: a,b,c и d – действительные параметры.
Подстановка составляющих электромагнитного поля (24) в систему уравнений Максвелла (1)-(8) в системе единиц Хэвисайда, как нетрудно проверить, дает тождество. Такое поле имеет следующий физический смысл. Электрическая составляющая E (24) и электрический потенциал α линейно изменяются во времени и пространстве. Магнитная составляющая H перпендикулярна электрической и постоянна во времени.
Рассмотрим (24) как системы преобразования координат двух видов. Первый вариант λ→λ’ преобразования по (10) и (24) соответствует повороту координатных осей:
(25):
Второй вариант λ→Λ’ преобразования по (10) и (24) соответствует переходу к движущейся системе координат с соответствующим изменением масштаба временной координаты и соответствует преобразованию Лоренца [2]:
(26):
Следующей рассмотрим вариант квадратичной функции:
(27):
Компоненты функции (27) записаны в системе единиц Хэвисайда. Рассмотрим функцию (27) как представление электромагнитного поля. Для перехода в систему единиц СИ необходимо ввести размерностные и амплитудные коэффициенты с учетом соответствия составляющих функции и составляющих электромагнитного поля [2]:
(28):
Где: nX , nY, nZ ,ω – размерностные действительные коэффициенты, HX0, HY0, HZ0, EX0, EY0, EZ0 – амплитудные действительные коэффициенты.
Подстановка составляющих (28) в систему уравнений Максвелла, записанную в системе единиц СИ (1)-(8) дает следующие соотношения:
(29):
Из (29) получим следующие соотношения:
(30):
Рассмотрим функцию (27) как два варианта преобразования системы координат. Первый из них соответствует преобразованию листа малой переменной на лист малой переменной [2]:
(31):
Второй вариант преобразования соответствует преобразованию листа малой переменной на лист большой переменной [2]:
(32):
На основе квадратичных преобразований (31) и (32) возможно получение новых решений системы уравнений Максвелла. В качестве примера запишем показательные функции
(33):
(34):
Представляя показательные функции (33) и (34) аналогами формулы Эйлера [2] (21), с учетом значений штрихованных переменных (31) и (32), получим покомпонентное представление функций F1 и F2. В этом случае компоненты электромагнитного поля записываются в конечном разделенном виде. Свойства решений (33) и (34) (и (28)) требуют отдельного рассмотрения. Здесь заметим, что эти решения не стационарны – все компоненты и характеристики смещаются во времени. Определение граничных условий для функций (33) и (34) позволяет определить поверхности выполненных граничных условий [5], вдоль которых возможно выкладывание проводящих поверхностей. Граничные условия определяются из следующих уравнений для функции (33):
(35):
Для функции (34) граничные условия будут аналогичными с учетом (32):
(36):
Как видно из (35) и (36), поверхности будут смещаться во времени, т.к. зависят от t как от параметра. Следовательно, граничные условия, выполненные в один момент времени, не будут выполняться через некоторое время. Поэтому выполнение граничных условий можно считать выполненными только условно (приближенными) или в фиксированный момент времени. Через некоторый промежуток времени граничные условия могут выполниться снова. Вследствие этого электромагнитное поле при выполнении граничных условий будет распространяться в таком волноводе с малым затуханием, а при их нарушении – с большим. Это должно приводить к амплитудной модуляции электромагнитного поля.
Описанное решение позволяет точно рассчитать электромагнитное поле вблизи поверхности 2-го порядка.
Аналогично выше изложенному, можно получить покомпонентное представление других функций целой степени n, например, вида:
(37):
Такие решения хотя и достаточно громоздки, но могут быть получены в конечном виде.
Описанный метод получения 3-D-решений путем использования сложных М-функций и преобразований систем координат позволяет получать новые преобразования и решения системы уравнений Максвелла и расширяет возможности их точного расчета. В том случае, когда эти преобразования обратимы, повторное применение прямого и обратного преобразования эквивалентно единичному преобразованию. В этом случае такое преобразование образует группу преобразований [5]. Так как предложенные преобразования почти всегда обратимы, то они увеличивают число собственных групповых преобразований системы уравнений Максвелла. Это позволяет неограниченно расширять число точных решений системы уравнений Максвелла.
Литература:
- Никольский Н.Н. Электродинамика и распространение радиоволн. – М.: Наука, 1978. – 543 с.
- Кравчик Ю.С. Обобщение комплексных чисел и их применение в электродинамике // Праці УНДІРТ. – 2003. — №4(36).
- Кравчик Ю.С. Метод введения неэлектромагнитных полей в электромагнитную теорию Максвелла // ПраціУНДІРТ. – 2002. — №1(29). – С 52 – 57.
- Сидоров Ю.В., Федорюк М.В., Шабунин М.И. Лекции по теории функций комплексного переменного. – М.: Наука, 1982. – 488 с.
- Кравчик Ю. С. Применение группового двумерного преобразования для получения Т- решений однородной системы уравнений Максвелла // Mat. The science: theory and practice 2005. V.26. Science. Pb. House. Praga, 2005 – с 31-34.
- Фушич В.И., Никитин Ф.Г. Симметрия уравнений Максвелла. – Киев: Наукова думка, 1983. – 200 с.